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Abstract  

Monitoring with the PiCCO technology (Pulse Contour Cardiac Output) has become a widely adopted method for hemodynamic 

assessment and fluid management in critically ill patients. The technique combines transpulmonary thermodilution and pulse contour 

analysis to provide continuous or intermittent measurements of cardiac output, global end-diastolic volume index (GEDVI), 

extravascular lung water index (EVLWI), and systemic vascular resistance index (SVRI). Despite its technological sophistication and 

broad clinical use, the validity, reproducibility, and universal applicability of PiCCO-derived data remain subject to ongoing debate. 

Particular concern arises in clinical scenarios involving altered physicochemical properties of blood, vascular dysregulation, 

vasoplegia, or hypoproteinemia, where thermodilution-based calculations may become inaccurate. Furthermore, neurohumoral and 

reflex circulatory mechanisms - such as the Schwik-Larin reflex - are not accounted for in the PiCCO model, yet may significantly 

impact hemodynamic dynamics and confound interpretation. This review provides a critical analysis of the methodological, 

physiological, and clinical limitations of PiCCO monitoring. Special emphasis is placed on the influence of blood rheology, 

temperature, microcirculatory changes, and endothelial dysfunction on the reliability of computed hemodynamic variables. The 

necessity of an integrative approach to data interpretation is emphasized, involving the correlation of PiCCO-derived parameters with 

the clinical picture, laboratory findings, therapeutic response, and the patient's pathophysiological status. In conclusion, PiCCO 

remains a potentially valuable tool in critical care; however, its effective use requires clinical vigilance, awareness of physiological 

constraints, and individualized therapeutic decision-making, particularly in fluid management strategies. 
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Introduction 

Modern intensive care is impossible without accurate and timely 

hemodynamic monitoring. Adequate infusion therapy is the 

cornerstone of stabilizing critically ill patients, particularly in 

cases of septic shock, ARDS (acute respiratory distress 

syndrome), trauma, severe infections, and multiple organ failure. 

However, traditional parameters such as arterial pressure, central 

venous pressure (CVP), urine output, and lactate levels often fail 

to provide a comprehensive picture of intravascular volume, 

preload, and tissue perfusion efficiency. This creates the risk of 

both hypovolemia and fluid overload, which may worsen the 

prognosis. In the search for more reliable and informative tools to 

assess volume status, the PiCCO (Pulse Contour Cardiac Output) 

method was developed, combining transpulmonary 

thermodilution with arterial pressure waveform analysis. Unlike 

invasive pulmonary artery catheterization (Swan–Ganz method), 

PiCCO provides information on parameters such as cardiac output 

(CO), global end-diastolic volume index (GEDVI), extravascular 

lung water index (EVLWI), systemic vascular resistance index 

(SVRI), myocardial contractility (dPmax), and others [1-4]. This 

makes the technology particularly attractive for use in intensive 

care units, where rapid and precise hemodynamic assessment is 

required in unstable patients. Moreover, the method allows for the 
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evaluation of so-called “volume responsiveness” and enables 

tailoring of infusion strategies to individual patient needs, which 

is especially important in goal-directed therapy. In many 

guidelines and clinical protocols, PiCCO is recommended as a 

reference tool for determining the required volume of fluid 

resuscitation, preventing pulmonary edema, and ensuring the 

rational use of vasoactive agents [5-7]. 

Rationale for Critical Appraisal 

Nevertheless, despite its attractiveness and technological 

sophistication, the PiCCO method is not without limitations. Its 

accuracy and reproducibility may be significantly affected by 

physiological, biochemical, and rheological factors such as blood 

properties, vascular wall condition, concomitant metabolic 

disturbances, as well as the specifics of the measurement 

procedure itself. In addition, certain theoretical assumptions 

underlying the interpretation of PiCCO-derived parameters 

remain controversial and require reconsideration in light of 

clinical practice. The aim of this review is to critically examine 

the limitations, methodological challenges, and risks associated 

with the use of PiCCO technology in intensive care. Particular 

attention is given to physiological and clinical-laboratory factors 

influencing data interpretation, as well as to the rationale for 

adopting an integrative and balanced approach to the analysis of 

obtained parameters, which is especially important in the context 

of high clinical relevance of therapeutic decision-making. 

Limitations and Methodological Challenges of the 

PiCCO Technology 

Criticism of the Excessive Emphasis on Central Venous 

Pressure (CVP) 

In recent years, the clinical significance of central venous 

pressure (CVP) as a predictor of volume responsiveness has been 

increasingly questioned [8]. A particularly influential position 

was presented in a meta-analysis [9], which concluded that CVP 

has low predictive value for assessing the response to fluid 

loading. However, such a viewpoint is one-sided and 

methodologically vulnerable. First, the absolute value of CVP 

indeed cannot serve as a universal predictor of fluid 

responsiveness, as it depends on right ventricular compliance, 

intrathoracic pressure, and numerous other variables. 

Nevertheless, CVP dynamics over time-particularly in serial 

measurements before and after fluid administration-can provide 

valuable insights into changes in preload and hemodynamic 

adaptation. This is supported by clinical observations where an 

increase in CVP following a fluid challenge, without 

improvement in cardiac output, may indicate fluid overload [10]. 

Second, the cited meta-analyses lacked strict randomization, 

suffered from heterogeneous populations, and included studies 

with different methodologies for hemodynamic assessment. As 

rightly noted by Teboul JL and colleagues (2016), “meta-analyses 

are quantitative summaries, but not always qualitatively reliable 

recommendations for clinical practice” [11]. Thus, CVP should 

not be entirely dismissed as a hemodynamic parameter. Rather, it 

should be used in conjunction with other indicators, including 

dynamic tests, ultrasound findings, PiCCO-derived parameters, 

and laboratory markers of hypovolemia. 

Influence of the Physicochemical Properties of Blood on 

the Accuracy of Transpulmonary Thermodilution 

The PiCCO technology is based on the method of transpulmonary 

thermodilution, in which changes in blood temperature are 

recorded after intravenous bolus administration of a cold indicator 

solution. This method enables the calculation of key 

hemodynamic parameters, including GEDVI and EVLWI. The 

basis of these calculations is the thermodilution curve, which 

reflects standard physical interactions of the indicator with blood. 

However, in clinical practice, the accuracy of these calculations 

directly depends on the physicochemical properties of blood. 

Unlike a homogeneous fluid, blood is a complex colloidal–

cellular system composed of formed elements, plasma proteins, 

lipids, ions, buffering components, and biologically active 

molecules. Blood viscosity and thermal conductivity are dynamic 

parameters that can change under the influence of temperature, 

pH, osmolarity, albumin concentration, fibrinogen levels, and 

hemostatic activity [12,13]. Most PiCCO calculations are based 

on models of linear bolus distribution, which do not adequately 

reflect the true physiological heterogeneity of blood flow and 

vascular architecture in critically ill patients [14]. Therefore, 

changes in viscosity, hematocrit, erythrocyte and platelet 

aggregation, and vascular compliance may substantially distort 

the thermodilution curve and, consequently, lead to inaccurate 

values of GEDVI and EVLWI [15-18]. For example, in 

hypoproteinemia, reduced plasma viscosity accelerates indicator 

dispersion, resulting in overestimation of cardiac output and 

underestimation of volumes. Leukocytosis and thrombocytosis 

affect microcirculation and phase distribution, while hemolysis, 

the presence of microthrombi, and endothelial dysfunction (e.g., 

in sepsis) disrupt uniform bolus distribution within the vascular 

bed [19-23]. Thus, despite the high sensitivity of the method, 

PiCCO monitoring results must be interpreted with consideration 

of the physicochemical properties of blood, especially in patients 

with acute disturbances of homeostasis. This requires clinicians to 

recognize the limitations of the method and the necessity of 

periodic recalibration when significant changes in blood 

composition and properties occur. 

Physiological Limitations of Thermodilution 

Monitoring: The Role of the Shwiegk–Larin Reflex 
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The hemodynamics of the pulmonary and systemic circulations 

are closely interconnected through mechanisms of neurohumoral 

and reflex regulation. One such underexplored yet important 

mechanism is the Shwiegk–Larin reflex, according to which an 

increase in pulmonary vascular pressure induces a reflex decrease 

in systemic arterial pressure, bradycardia, redistribution of blood 

to the reticuloendothelial system, and vasodilation in skeletal 

muscles [24-28]. This protective mechanism is aimed at 

unloading the pulmonary capillaries and preventing pulmonary 

edema [29-32]. However, during PiCCO monitoring, such 

adaptive responses are not taken into account, which may lead to 

underestimation of pulmonary circulation perfusion and 

overestimation of systemic vascular resistance. In conditions of 

hypoproteinemia, increased capillary permeability, and 

vasoplegia (e.g., in septic shock), the predictive accuracy of 

parameters such as GEDVI and SVRI is significantly reduced. 

Thus, interpreting PiCCO-derived data without considering 

neurohumoral vascular regulation may result in misleading 

clinical conclusions and potentially irrational infusion strategies. 

The Importance of Infusion Rate in the Interpretation 

of Preload Parameters 

One of the key principles of infusion therapy is the assessment of 

volume responsiveness, or the ability of cardiac output to increase 

in response to fluid loading. However, not only the infused 

volume but also the rate of administration is of critical 

importance. When infusion is performed slowly, the effect of 

rapid venous return to the heart and activation of the Frank–

Starling mechanism may not be realized. In this context, PiCCO-

derived indicators such as SVV (stroke volume variation) and 

GEDVI are calculated without accounting for the kinetics of 

volume loading. As demonstrated by Monnet X. [33], the passive 

leg raising (PLR) test is reliable only when there is a rapid 

redistribution of venous blood into the thoracic cavity. If the 

response to infusion is too prolonged, the test results lose their 

validity [34]. Furthermore, PiCCO algorithms do not account for 

the pharmacological effects of vasoactive agents, which alter 

vascular tone and compromise the predictability of volume 

responsiveness. Therefore, the interpretation of SVV or GEDVI 

outside the context of infusion rate and concomitant drug therapy 

is methodologically vulnerable. 

Conclusion 

Taken together, these findings underscore that while PiCCO 

technology represents a valuable advancement in hemodynamic 

monitoring, its clinical utility is contingent upon rigorous and 

context-specific interpretation. Reliable decision-making can only 

be achieved when PiCCO-derived parameters are integrated with 

a comprehensive evaluation of blood rheology, infusion load 

dynamics, vascular reflex responses, and corroborating clinical 

and laboratory indices. Failure to account for these determinants 

not only diminishes the diagnostic validity of the method but also 

increases the risk of therapeutic misjudgments in critically ill 

patients. Consequently, PiCCO should not be regarded as a stand-

alone or universally applicable monitoring modality, but rather as 

an adjunctive tool whose accuracy and clinical impact depend on 

expert, multifactorial assessment. 
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